Brain Builders Coaching Center

ICSE Class 9 Biology

Economic Importance of Bacteria and Fungi

- Bacteria and fungi are micro-organisms with both beneficial and harmful roles.
- They influence agriculture, industry, medicine, food, and environment.
- Understanding their importance helps in using them beneficially and controlling their harmful effects.

Part A – Economic Importance of Bacteria

2. Useful Roles of Bacteria

(A) In Agriculture

1. Nitrogen Fixation

- o *Rhizobium*: Symbiotic in legume root nodules; converts atmospheric $N_2 \rightarrow$ nitrates.
- o Azotobacter, Clostridium: Free-living nitrogen fixers.

2. Nitrification

- o *Nitrosomonas*: Converts ammonia → nitrites.
- \circ *Nitrobacter*: Converts nitrites \rightarrow nitrates.

3. Ammonification

- o Decomposers convert organic nitrogen (proteins, urea) → ammonia.
- 4. **Result**: Increases soil fertility, essential for crop yield.

(B) In Industry

1. Dairy Industry

 Lactobacillus converts milk sugar (lactose) → lactic acid → curd, yoghurt, cheese.

2. Vinegar Production

o Acetobacter aceti converts alcohol \rightarrow acetic acid (vinegar).

3. Antibiotics

- \circ Streptomyces \rightarrow streptomycin, tetracycline, erythromycin.
- Bacillus subtilis → bacitracin.

4. Enzymes

 Bacillus subtilis produces proteases, amylases → used in detergents, leather, textiles.

5. Leather Industry

o Bacteria remove hair & tissue from hides during tanning.

(C) In Medicine

- **Antibiotics**: Life-saving drugs (streptomycin, tetracycline).
- Vaccines: Certain bacteria used to prepare vaccines (e.g. BCG for TB).
- **Probiotics**: *Lactobacillus* improves digestion and gut health.

(D) In Environment

- **Decomposition**: Saprophytic bacteria recycle nutrients from dead matter.
- **Bioremediation**: Bacteria degrade pollutants, oil spills.
- Sewage treatment: Anaerobic bacteria digest organic waste.

3. Harmful Roles of Bacteria

(A) Human Diseases

- Tuberculosis *Mycobacterium tuberculosis*.
- Cholera Vibrio cholerae.
- Typhoid *Salmonella typhi*.
- Tetanus *Clostridium tetani*.
- Gonorrhoea Neisseria gonorrhoeae.

(B) Plant Diseases

- Rice blight *Xanthomonas oryzae*.
- Crown gall Agrobacterium tumefaciens.
- Wilt in potato/tomato *Pseudomonas solanacearum*.

(C) Food Spoilage

• Milk souring, meat rotting, vegetable decay.

4. Nitrogen Cycle

Bacteria play central role in cycling nitrogen:

1. Nitrogen Fixation

o *Rhizobium, Azotobacter* fix atmospheric nitrogen \rightarrow ammonia/nitrates.

2. Nitrification

- o *Nitrosomonas*: Ammonia \rightarrow nitrite.
- \circ *Nitrobacter*: Nitrite \rightarrow nitrate.

3. Assimilation

- \circ Plants absorb nitrates \rightarrow form proteins.
- o Passed to animals through food chain.

4. Ammonification

o Decomposers break organic matter → ammonia.

5. **Denitrification**

o Pseudomonas, Thiobacillus convert nitrates \rightarrow free N_2 gas, returning it to atmosphere.

Importance: Maintains balance of nitrogen in biosphere.

Part B – Economic Importance of Fungi

5. Useful Roles of Fungi

(A) In Industry

1. Fermentation

- Saccharomyces cerevisiae (yeast):
 - Baker's yeast → bread-making (CO₂ makes dough rise).
 - Brewer's yeast \rightarrow beer, wine, alcohol fermentation.

2. Antibiotics

o *Penicillium notatum* → Penicillin (first antibiotic discovered).

3. Organic Acids

o Aspergillus niger \rightarrow citric acid, oxalic acid.

(B) In Agriculture

- Mycorrhizal fungi (Glomus): Symbiotic with plant roots \rightarrow increase nutrient absorption.
- **Decomposers**: Break down dead matter → recycle nutrients.

(C) In Food

- Mushrooms (Agaricus bisporus) \rightarrow edible, rich in proteins, vitamins, minerals.
- Cheese ripening: Penicillium roquefortii in blue cheese, Penicillium camemberti in Camembert cheese.

(D) Mushroom Cultivation

Method:

- Compost prepared from straw & manure.
- o Spores/mycelium sown.
- Kept moist at 20–25°C.
- o Ready for harvest in 3–4 weeks.
- **Economic value**: Nutritious food + profitable commercial crop.

6. Harmful Roles of Fungi

3

- **Plant diseases**: Wheat rust (*Puccinia*), smut of corn (*Ustilago*).
- **Human diseases**: Ringworm (*Trichophyton*), Athlete's foot.
- **Food spoilage**: Bread mould (*Rhizopus*), fruit rot, food poisoning.
- **Poisonous fungi**: Toadstools (contain toxic alkaloids).

7. Moulds, Yeast, Mushrooms

- Moulds (Rhizopus, Aspergillus, Penicillium)
 - Spoil food.
 - o Useful: antibiotics (penicillin), acids (citric acid).
- Yeast (Saccharomyces)
 - o Single-celled fungus.
 - \circ Baker's yeast \rightarrow bread.
 - o Brewer's yeast \rightarrow alcohol.
 - o Rich source of Vitamin B.
- Mushrooms (Agaricus)
 - o Edible, rich in protein.
 - o Cultivated commercially.
 - o Some poisonous (toadstools).

Group	Useful Roles	Harmful Roles
Bacteria	Nitrogen fixation, dairy, vinegar, antibiotics,	Human & plant diseases, food
	probiotics, decomposition	spoilage
Fungi	Bread, alcohol, penicillin, acids, cheese,	Plant diseases, fungal
	mushroom cultivation	infections, food spoilage
Yeast	Baker's yeast, Brewer's yeast, Vitamin B	Rare infections
Moulds	Antibiotics, acids	Spoil bread, fruits
Mushrooms	Food, commercial cultivation	Poisonous toadstools